M-a13e 37

WNCLASSIFIED

SYSTEMS ARCHITECTS INC RANDOLPH MASS i

F/6 9/2 -
COMPUTER SYSTEMS ACQUISITION WETRICS HANDBOOK . VOLUME 1. INTROD==ETC (1)
MAY 82 F19628-80~-C~-0207
! £S0=-TR=g2-143(1) NL

-

AD A120375

DT FILE TOPY

ESD-TR-82-143(1)

ANTRODUCTION AND GENERAL INSTRUCTIONS ‘FOR
COMPUTER SYSTEMS ACQUISITION METRICS '
HANDBOOK, VOLUME I

Systems Architects, Inc.
50 Thomas Patten Drive
Randolph, MA 02368

May 1982
; Ed
Approved for public release;
Distribution unlimited.
. o™l
‘_\., LT . sﬁu
., L (octd

Prepared for

ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

DEPUTY FOR TECHNICAL OPERATIONS AND
PRODUCT ASSURANCE

HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, fuinished, or in any way sup-
plied the said drawings, specifications, or other date is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

REVIEM AND APPROVAL

This technical report has been reviewed and is approved for publication.

L kwﬂ:/ W, My

ROBERT V. VIERAITIS, Jr., 1Lt, USAF ES ¥. NEELY, Jr., Lt Col, USAF
Project Officer Chief, Computer Engineering

Applications Division .
FOR THE COMMANDER '

. L/ -
/L’ﬁ{¢y’/’tl ﬂ’ &
WALTER ¥W. TURGISS
Acting Director, Engineering and Test
Deputy for Technical Operations
and Product Assurance

.
) :
e T ey em—— R
B *

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ
| REPORT DOCUMENTATION PAGE BEFORE C‘gggggg,g‘g'?o“
1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER 1
ESD-TR-82-143(I) AD-RA1203T75
4. TITLE (and Subtitte) S. TYPE OF REPORT & PERIOD COVERED i
troduction and General Instructionslfor
Computer Systems Acquisition Metrics
Handbook .}Volume 1. 8. PERFORMING ORG. REPORT NUMBER A
7. AUTHOR(s) 8. CONTRACT OE GRANT NUMBER(a) ff
Systems Architect, Inc. F19628-80~-C-0207 :
9. PERFORMING ORGANIZATION NAME_AND ADDRFSS 10. PROGRAM EL EMENT, PROJECT, TASK
Systems Architects. Incu AREA & WORK UNIT NUMBERS
50 Thomas Patten Drive
Randolph, MA 02368
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
a Electronic Systems Division (TOEE) May 1982
| Hanscom AFB 1. nunggn OF PAGES
Massachusetts 01731
i [T4, MONITORING AGENCY NAME & ADDRESS(! different from Controlling Office) | 15. SECURITY CLASS. (of thie report)
Unclassified
TSa. DECL ASSIFICATION/ DOWNGRADING
SCHEOULE

[76T DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract sntered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)
Computer systems

Metrics

Quality assurance

Software

\ . ABSTRACT (Continue on reverse side if necossary and identify by block number)

is volume provides an overview to a standard set of procedures for
' qualitatively specifying and measuring the quality of a computer software
system during its acquisition life cycleR

! DD ,'on'ys 73 toimon oF 1 nov 6813 ossoLETE Unclassified
SECURITY CLASHFICATION OF TRIS PAGE (Whon Date Encorsd)

TABLE OF CONTENTS

Section Title Page
1 INTRODUCTION TO SOFTWARE METRICS
1.1 OVERVIEW. . . e e e e e e I-1
1.2 SOFTWARE METRICS FRAMEWORK. e v e e e 1-1
41.2-1 Qualit)' Factors. I°3
1.2-2 Criteria LY . 1'3
1.2.3 Metrics.1-9
1.2.4 Data Blements. - 1-9
I1 SOFTWARE DEVELOPMENT LIFE CYCLE MODEL
2.1 INTRODUCTION. . . D § 51
2.2 THE SOFTWARE DEVELOPMENT LIFE CYCLE MODEL FOR
METRICS N § £ |
2.3 THE SOFTWARE DEVELOPMENT LIFE CYCLE MODEL FROM-
ESD GUIDEBOOK SERIES. . . . e e A § £ |
2.4 SOFTWARE DEVELOPMENT PRODUCTS e €%
2.4.1 First Metric Application Information
Requirements . . . P § £)
2.4.2 Update Information Requlrements « + . . 1I-8
2.4.3 Documentation Considerations II-12
2.4.3.1 Contents of Documents II-12
2.4.3.2 Product Mapping.. . . . I1-12
2.4.3.3 Appropr1ate Le¥els of Agpaxrng.5~~~
Metrics . -4
2.4.3.4 Sequenc1ng of ﬁetr;c Apprféﬂq a.1a
tion, . . . Woeow e SAT b.EI16
‘ﬁ h“;'»pq-.!‘nb ’
2.5 APPLICABILITY OF SOFTWARE METRIICS J’HROUGH 'nmw-~ i
LIFE CYCLE. . . T L) *'IIr16
I11 HANDBOOK FRAMEWORK 4 - e QMr;:»-
r’.v'-v‘, '!“‘\ te '
3.1 COMPONENTS OF COMPUTER SYSTEM$ ACQUISSTTION :‘ .
METRICS HANDBOOK. . . ‘ .y . III-1
3.2 INTERRELATIONSHIP OF SOFTWARB,METRIC'g KND .
HANDBQOOK'S FRAMEWORKS . . . 4 v e e e e e o o I1I-1
{
IV HOW THE HANDBOOK WORKS !
4.1 INTRODUCTION. Iv-l
4.2 STEPS FOR USING THE QOITWARE MFTRI(S IlANDuOOK . .
4,3 IDENTIFICATION OF WORKSHEETS.
4.4 DATA ELEMENT DICTIONARY (DED) . . .

AT o -dw"bs;

“l-:-grw, R o

TABLE OF CONTENTS (Cont'd)

Section Title Page
Vv QUALITY FACTOR SELECTION
5.1 INTRODUCTION. . . T A2 |
5.2 QUALITY FACTOR TRADE OFFS . . 3 . V-1
5.3 SIGNIFICANCE OF QUALTTY FACTORS IN C SYSTBMS . V-3
VI QUALITY FACTOR EVALUATION
6.1 POST DATA COLLECTION. + v v & + « . « + VI
6.2 EVALUATION. . & ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o o o« +» VI-1

1 A..m‘“ r.r’—ﬁ
(Tan1s GRAAL

nTIs)
D11@ TAB

Usamsouneot O
’“w‘.“‘w]

g

BY.
psteiwution) .
Availability Codes

—Taveil endfer
{ .oeul

pDict

B oo

iv

el AT

SECTION I
INTRODUCTION TO SOFTWARE METRICS

1.1 OVERVIEW

This Handbook contains a standard set of procedures to quanti-
tatively specify and measure the quality of a computer software
system during its acquisition life cycle. These quantitative
measures, or metrics, provide the user with a tool to better as-
sess the system's development and potential performance throughout
the acquisition phases.

The metrics are calculated from the answers to questions,
called data elements in this Handbook, which also serve as a check-
list to aid Software Quality Assurance. These metrics are a tool
for current Software Quality Assurance practices. They are an
added feature to current tools and techniques utilized in Software
Quality *--urance practices.

The Handbook is tailored specifically to address embedded Com-
mand Control and Communications (C3) computer systems. Efforts to
apply the procedures to other than C3 systems may require reworking
by the user of the materials contained in the Handbeok.

1.2 SOFTWARE METRICS FRAMEWORK

Software Metrics are a set of measurements for meésuring es-
sential aspects of software systems. Realistic assessments and

. ratings are based on the measurements so that the overall quality

of a system’s software can be made visible. .

There are four levels in the Software Metri¢s Framewcrk pre-

- sented in this Handbook: (1) Factors, (2) Criteria, (3) Metrics,

and (4) Data Elements. This Framework is illustrated in Figure I-1.

Each level of the Framework is defined in the following sub-
sections. Conflicting or different definitions outside of this
Handbook are not applicable to Software Metrics, and conversely,

I-1

L e

YYOMINVYEd SOIYLIAN TUVMLIOS

1-1 ANOIA
INENZYT
viva
SLN:ANATH AININZ13 ININATT. AN3W3T3 ININI18 ANINAY
vivd viva 1 viva viva | viva viva
= | o 3
o~y
[]
(27]
DULYN J14iaN , SOIULAN : SOIuLIN
]
i
vIN3LIYND VAR ETRY &) visdLiw !
]] '
L 1 Y
|
WOLIVd
ALITVAD
]
!

the definitions found within this Handbook are not necessarily ap-
plicable to other concepts.

1.2.1 Quality Factors

Quality Factors are management-oriented terms which
define desirable characteristics of the software systems
under development from a management perspective. Presence
of these Quality Factors improve the probability of producing
the desired softwsre system. A quantitativevanalysis of the
Quality Factors will indicate areas of weakness and strength
in the system. Maintainability and Integrity are two ex-
amples of Quality Factors. Maintainability refers to the
effort required to locate and fix an error in an operational
program. Integrity refers to the extent to which access to
software or data by unauthorized persons can be controlled.

Eleven (11) Quality Factors have been selected for
this Handbook. TABLL I-A contains a complete list of the
Quality Factors and their definition. A discussion of se-
lecting appropriate Quality Factors for a specific system is
found in Section V, "Quality Factor Selection".

1.2.2 C(Criteria

Criteria form the next level of the Framework under
the Quality Factors. Criteria are software-oriented terms
that describe software attributes., Each Quality Factor has
two or more Criteria related to it in a hierarchy. Consis-

. tency and Simplicity are two examples of Criteria related to
the Quality Factor "Maintainability". Consistency and Sim-
plicity are two examples of Criteria related to the Quality
Factor '"Maintainability’”. Consistency refers to those attri-
butes of the software that provide implementation of function
in the most understandable manner. '

Twenty-two (22) Criteria have been included in this
Handbook. TABLE I1-B contains a complete list of the Criteria
and a definition for each. Figure I-2 shows the relationship
of the Criteria to the Quality Factors.

I-3

R TN 2 e J,,g__mvi;._g_ ';,_l o

T I

—_— X

FACTOR DEFINITION
Extent to which a program satisfies its

Correctness (Co) specifications and fulfills the user's mission
objectives,

sahili Extent to which & program can be expected to

Reliability (Re) perform its intended function with required
precision.

: The amount of computing resources and code

Efficiency (Ef) required by a program to perform a function.

. Extent to which access to software or data by

Integrity (It) unauthorized persons can be controlled.

. - 'Effort required to learn operate, prepare
Usability (Us) input, and interpret output of a program.
Maintainability Effort required to locate and fix an error in

an operational program.
(Ma)

Testability (Te) |Effort required to test a program to insure it
performs its intended function.

Flexibility (Fx) |[Bffort requited to modify an operational

. progranm.

Portability (Po) |[Bffort Tequired to transfer a program from one
hardware configuration and/or software system
environment to another. '

Reusabilicy (Ru) |[Extent to which a program can be used in other
89Plications - related to the packaging and
$8bpe of the functions that programs perform.

Interoperability Effort required. to couple one system with

(I‘p) aftother,

Rtastialdiomtts

TABLE 1-A
QUALITY FACTOR TABLE

I-4

CRITERION

DEFINITION

Traceabilicy

Those attributes of the software that provide

a thread from the requirements to the imple-
mentation with respect to the specific develop-
ment and operational environment.

Completeness

Those attributes of the software that provide
full implementation of the functions required.

Consistency

Those attributes of the software that provide
uniform design and implementation techniques
and notation. '

Accuracy

Those attributes of the software that provide
the required precision in calculation and
outputs.

Error Tolerance

Those attributes of the software that provide
continuity of operation under nonnominal.
conditions.

Those attributes of the software that provide
implementation of functions in the most under-

Simplicity standable manner. (Usually avoidance of prac-
tices which increase complexitv).
Those attributes of the software that provide
Modularity a structure of highly independent modules.
Those attributes of the software that provide
Generality breadth to the function performed modules.
ghcse attributeg 3f the software that provide
‘s or expansion of data storage requirements or
Expandability computational functions.
'ghosehzttributes of the software that provide
or the measurement of usage or identification
Instrumentation of errors.
Self - Those attributes of the software that provide
Descriptiveness explanation of the implementation of a

function.

TABLE 1I-B
CRITERIA TABLE

PRSI S 3

CRITERION DEFINITION
Execution Those attributes of the software that provide
Efficiency for minimum processing time.
Those attributes of the software that provide
Storage for minimum storage requirements during
operation.

Efficiency

Access Control

Those attributes of the software that provide

for control of the access of software and data.
!

f

Access Audit

Those attfibutes of the software that provide
for an audit of the access of software and
data.

Those attributes ofvthé software that deter-
mine operation and procedures concerned with

Operability the operation of the software.
Those ;ttriﬁutes of the software that provide
trainin transition from current operation or initial
g familiarizatien.
Those sattributes of the software that provide
Communicativeness | useful inputs and outputs which can be

" .. A

assimilated.

Software system

Those attributes of the sof?@af; that determine
its dependenéy on the softwaré étivironment
(operating systems, utilities, input/output

Independerice routines, etc.).
) _ - . . , i
Those attributes of the softward that determinq
Machine its dependency on the hardware systenm. .
Independence
. L — . b
\ Those attributes of thé doftware that provide
Communicationd - 2
: . the use of standard prétdcols and interface
Commonality fouTines P
o - . ..'. o ‘; . g . __i .

Data Commonality

DORTEU SO -

Those attributes of the software that pfo;ide
the use of standard data representations.

TABLE 1-B (Continued)
CRITERIA TABLE
1-6

* . — - - - T s — ‘i.. o o
IR T R AE TR L G s, SR e e
PR ATl e oA ko

o

e e e

CORRECTNESS

| Consistancy | | Completaness | !

Crsmin 3

| Error Toleranca | | Consistency | | Accuracy | | simplicity |

| Execution Efficiency | | Storage Efficiency |

Tracsability

LEGEND
O Factor @
= Criterta

[Access Control | | Accass Audit |

Training | | Comunicativeness | | Operability |

Stmplicity | | Conciseness | | lbdular'léy] [Se)f-Descriptiveness |

FIGURE I-2
RELATIONSHIP OF CRITERIA TO SOFTWARE QUALITY FACTORS

1-7

e e e

Modularity

| cemerality | | Expandability | | Self-Descriptiveness |

Simplicity { modularity | | Instrumentation | | Self-Descriptiveness |

PORTABILITY
[Seif-Descriptiveness | | Machine Independenca |

Softuare System Machine
Independencs Independence

Somn Systam
Indagundencs

Generality

Moduyl ar Ly

Salf-Oescriptiveness

| Communications Commonality | | Data Commonality |

LEGEND
O Factor

=3 Criteria

.FIGURE I-2
RELATIONSHIP OF CRITERIA
7O SOFTWARE QUALITY FACTORS (Continued)

e TR

1.2.3 Metrics

Metrics are at the third level of the Framework and
represent the measurable aspects of the Criteria. Each Cri-
terion has at least one Metric, while some Criteria have sev-
eral Metrics associated with them. Design Structure Measure,
Structured Programming Check, and Complexity Measure are ex-
amples of the Metrics connected with the Criterion "Simplicity".

Thirty-seven (37) Metrics have been identified in this
Handbook. TABLE I1-C has a complete list of the Metrics.

1.2.4 Data Elements

Data Elements are at the fourth level of the Framework.
They are quantifyable questions that combine to produce a
Metric Value. An algorithm based on the answers to Data Ele-
ments for each Metric determines the value for each Metric.
Data Elements are questions about the software and software
development products that call for either YES-NO or numeric
type responses. Each Metric has at least one Data Element.
For example, Hierarchical Structure, Module Independence, and
Size of Data Base are the Data Elements that comprise the
Metric '"Design Structure Measure'. Hierarchical Structure
asks the question: '"Is a hierarchical chart provided which
identifies all modules in the system?" Module Independence
asks: "Is the module independent of the source of the input
or the destination of the output?" And size of Data Base asks:
"Number of unique data items in a data base?" All 126 Data
Elements are defined in a Data Element Dictionary which is
provided as part of this Handbook..

B e R T L

Access Audit Checklist

Access Control Checklist

Accuracy Checklist

Communications Commonality Checklist
User Input Interface Megsure

User Output Interface Measure
Completeness Checklist

Procedure Consistency Measure

Data Consistency Measure

Data Commonality Checklist

Performance Requirements Check
Iterative Processing Efficiency Measure
Data Usage Efficiency Messurs

Error Tolerance Coantrol Checklist
Recovery From Improper Input Data Checklist
Recovery From Computational Fsilures Checklist
Recovery From Hardware Faults Checklist
Recovery From Device Errors Checklist
Data Storage Expansion Measure
Extensibility Measure

Implementation For Generality Checklist
Module Testing Measyre

Integration Testing Measure

System Testing Measure

Machine Independence Msasure

Modular Implementation Measure
Operability Checklist

Quantity of Comments

Bffectiveness of Cowments Nessure
Descriptivensss of Implementstion Language Measure
Storage Efficiency Neasurs

Design Structyre Measure

Complexity Measure

Measure of Coding Simplicity

Software System Independence Measure
Training Checklist

Traceability Checklist

e S . S

TABLE 1-C
MBTRICS

I-19

~ory

e T R T S e B R LA . i 5 Mt s Y
_____ e e LTI T — jodia .

SECTION 11
SOFTWARE DEVELOPMENT LIFE CYCLE MODEL

2.1 INTRODUCTION

The Software Development Life Cycle Model is a management tool
that describes the major activities of a software development effort
in the order in which they are performed. There have been a number
of Software Development Life Cycle Models developed, each for a
particular environment, The Software Development Life Cycle Model
adapted for use in relationship to the Metric is a simple one,
generic in nature. The idea behind selecting such a simple model
is that it can be mapped into more particular models so that the
Metrics can be applied in a wide range of environments.

2.2 THE SOFTWARE DEVELOPMENT LIFE CYCLE MODEL FOR METRICS

The Software Development Life Cycle Model for Metrics has
five phases; (1) Requirements Analysis (2) Preliminary Design (3)
Detail Design (4) Implementation and (5) Test and Integration.
As of the writing of this Handbook,Metrics have been developed
for the first four phases and are still under development for the
Test and Integration phase and therefore Metrics for this phase
are not included in this Handbook. We discuss this phase of the
model because update information is collected during this phase.

2.3 THE SOFTWARE DEVELOPMENT LIFE CYCLE MODEL FROM ESD GUIDEBOOK
SERTES

The Software Development Life Cycle Model from the ESD Guide-
book Series has seven phases; (1) Conception (2) Analysis (3)
Design (4) Coding and Checkout (5) Test and Integration (6)
Installation and (7) Operation and Support. Figure II-1 maps the

II-1

P TR - .
STIAON FT10AD FJIT S OTULINW
FUYMIIOS ANV S,dS3 J0 NOSIUVAWOD
I-I1 F4N914
_ ~
... .
L]
-
e —— W e, -
' ’
| | |
| | 8 _ﬂﬂj
. u wetaes wwiisiinseg ..“..h-ﬂuu... poe 1903 wiisag syedgony weqviaruey .‘

Metrics model into the Guidebook series model. As can be seen in
Figure II-1 there are three major differences between the two
models; (1) The Metrics model does not consider three of the
Guidebook phases, '"Conception", "Installation" or "Operation

and Support” (2) The Metrics model's "Requirements Analysis"

and "Preliminary Design" phases correspond to the Guidebook's
"Analysis" phase and (3) The Metrics models "Detail Design'" and
"Implementation'" correspond to the Guidebock's "Design" and
"Coding and Checkout". This particular mapping is based on the
description of these phases in the Guidebook and explains why
Metrics "Preliminary Design" is mapped to "Analysis" and not to
"Design'. It should be made clear that these models are descrip-
tions of the order in which events usually take place and are
not "Directives'" that demand events take place in that order.
Therefore there are no "Hard aad Fast'" rules for any mapping,

the users judegement must be exercised in applying the metrics
using the life cycle models involved as a guide, not a directive.

2.4 SOFTWARE DEVELOPMENT PRODUCTS

In order to apply the Metrics to measure software quality,
two types of information must be available. The first type of
information required is the original organized documentation that
describes the system being measured. The second type of information
required by Software Metrics is the revisions to the original
documents. The original documents are utilized by Software Met-
rics in the first application efforts, in order to catch develop-
ment problems early in the life cycle. The revised documents are
measured during the update process in order to determine whether
these problems have been corrected adequately. This information
is available in what can be generically called "Software Develop-
ment Products". These "Software Development Products' are pro-
duced throughout the "Software Development Life Cycle'" and includc

such products as; requirement specifications, design documentation,
system/module diagrams and flowcharts with PDL, code listings and
complete sets of plans and procedures. For a more detailed under-
standing, as an example use the "Products'" tied to the ESD Guide-
book Life-Cycle Events Guidebook. These are "Products'" that are
usually produced during the development and acquisition of an
embedded software system. Table II-A lists these 'Products" as
they appear in the Guidebook and organized under the Guidebooks
Software Development Life Cycle Madel. By using the Table II-A

in conjunction with Figure II-1 it is possible to map these
“"Products" into the Metric Software Development Model. The results
of this mapping is demonstrated in Figure II-2 and in mcre detail
in Figure II-3, Notice that products of later phases provide in-
formation required for updates of Metrics originally calculated

in earlier phases.

2.4.1 First Metric Application Information Requirements

The initial types of information required by Software
Metrics (for the Requirement Analysis Metrics) are Tradeoff
Study Reports and System Specifications. These documents are
usually generated during an analysis of system alternatives.
Other documents necessary for Requirements Analysis phase
Metrics are authenticated development specifications for
each CPCI and any specification or ICD changes, which are
generated during allocation of requirements to the computer
program. FIGURE II-3 details the activities and products in
the Requirements Analysis and the Preliminary Design phase.

A second set of information is required in order to
perform Preliminary Design phase Software Metrics. The parts
of the draft product specifications conteining design approach-
es for each CPCI, which are geng¢rated during the requirements
allocation process, together with the miputes and action item
responsgs that are produced during a Preliminary Design Re-
view are both required for the Software Metrics in this phase.
FIGURE II-3 describes the activities and products needed for
the Preliminary Design phase, as well as Requirement Analysis
phase.

11-4

ANALYSIS PHASE
Activity

A

Devise § analyze alternatives
for the system, Segment (if
any), or any Software Subsystem
directly containing the Computer
Program.

B. Allocate requirements to
the Computer Program: i.e.
Functions.
Performance (e.g. respanse
times). .
Interface (with others)
Design constraints (e.g.,
prescribed algorithms,
core § processing time
budgets) .
Testing.
C. Conduct PDR(s) for the
Computer Program's CPCI(s).
DESIGN PHASE
Activity
A.l. Define algorithms not pre-
viously prescribed.
2. Design data storage structures.
3. Define Camputer Program Logic.
B. Allocate Computer Program
requirements intemally
(e.g., to PCs).
C. Test Planning.
D. CDR(s) for the Computer
Program's CPCI(s).
OODING AND CHECXOUT PHASE
Activity
A. Coding,
B. Limited checkout of compiler

C.

or assembly units.

Corresponding logic § data
structure revisions,

TEST AND INTEGRATION PHASE

Activity

A

Test Plamnirg.

Module tests,

CPCI test (PQT & AQT).

Softwsre Subsystem integration.

Product (s

A.

1. Tradeoff study reports.
2. lnitial or Authenticated
System Specification §
Sesunt Specifications

(it any).

.1. Authenticated Development

Specificstion for each CPCI.
2. Possible higher-level speci-

fication, and ICD, changes
3. Parts of draft Product Speci-

fications containing design

approaches for each CPCI.

PDR minutes and action item
responses.

Product (s

A

D. CDR minutes § sction item
respanses.

Product(s)

A-B Code.

C. Altered Product Specifications,
including compiler/assembly
listings.

Product(s)

A.1. Final CPCI Test Procedures.

.1

4.

Rmctional flowcharts.
Detailed flowcharts,

Data format descriptions.
Descriptions of algorithms
not previously prescribed.

Preliminary Product Speci-
fications, including the
above.

B

.1. System, Segment (if any)

and CPCI Test Plans.
Prelminary (PCI Test
Procedures.

2. Segment (if any) and system-
level Test Procedures,

B-D1.Test

2. Computer Pn':xr- coding
chan,

3.Modified Product
Specifications.

4,Possible high-level specifi-
cation, and 1CD, changes.

TABLE 11-A
LIFE CYCLE EVENTS

17-5

uotjeiFojuy

el e———
pue 3say

a3updy
‘watdu]

a3epdn
udtrsaq
1r838(Q

vzt 1

ajepdn
uysaq
‘urraId

uorjeifojug

e a4

pue 31s9]

S1onaoidd ANV SAILIAILIV HONOWHL

KVYO0ud ¥41NdWNOD N00dHAINd ONILIVK

Z-1I1 FTANOI4

uotjejudwajduy

o3spdy
ulljseq
T1930g

v

N/

3
pue 3urpo)

N
J u
noyda

uftsag
Trelaq

T4AOW FTOAD d4IT SIIULIW OLNI TIAOW FTIXD FAI1

Nwmmmmwnlllm s1sd
SETWTI91d Tuomer yrboq
ﬁ/—\“ 4 s3onpoad
N////W\\\\\w FEYTNEET
stsijeuy 135
asi

Iseyg
soO1130H

-]
[

11

L e s el e R WA L T Wt =

S1ONaoud ANV SAILIAILDV OINI @dddvW
TIAOW FTIAD FIIT SOIULIANW

€-11 FUNOIA

with TN g e

BE |l W
avm w. s

N o

NDISAd TIVIAd SINBER INOIY

I1-7

In order to perform Detail Design phase Software
Metrics, functional flowcharts, detailed flowcharts, data
format descriptions, and descriptions of any additional al-
gorithms are required. These products are generated while
defining computer program logic and new algorithms, and when
designing data storage structures. These products may be
separate from, or included in, the preliminary Product spec-
ifications that are also required in the Detail Design phase.
Preliminary Product specifications are generated when allo-
cating computer program requirements internally. The final
products required for the Detail Design phase are the minutes
and action item responses generated during a Critical Design
Review. FIGURE II-4 depicts the activities and products of
the Detail Design phase. An update to the Preliminary Design
Software Metrics is applied during this phase. This update
process will be discussed in more detail in Section 2.4.2
"Update Information Requirements'.

The information required to perform Implementation
phase Software Metrics is the source code. This code is
generated by the coding process itself, as well as through
limited checkouts of compiler or assembly units. FIGURE II-5
details the activities and products required for the Implemen-
tation phase. An update to the Detail Design phase Software
Metrics should be performed during this phase., The procedure
will be discussed in more detail in Section 2.4.2 "Update Infor-
mation Requirements".

2.4.2 Update Information Requirements

There are five update applications of Software Metrics
performed during the software development life cycle. Pre-
liminary Design metrics are reapplied twice, Detail Design
metrics sre reapplied twice, and Implementation metrics are
reapplied once. TABLE II-B 1ists the update applicatiomns
and the phases in which the updates are applied. "Steps for
Update Applications’ in the Module Instructions of each
Quality Factor describes the detailed process for performing
updates.

I1-8

it e m— >

oo A ¢ T W AT

SIonaodd GNV STILIAILOV OLNI q3ddvi

TAAON d10AD 41T SOTHLIW

$-11 THUNO1d

30 BHLIW
ALV 0

E
|
z
:

NOISHd TIVIHQ

e e

11-9

+

SIDNA0¥d GNV SAILIAILOV OINI daddvi
TAQOW ITDAD FAIT SOTULANW
S-11 34914
(2AVGAN ND1SIT 1VL30)
SONLISTY
KTGHISSY/UT 11 dH00
SNIGNTONI
“SNO11YD1313345. o
10Na08d ~
Rarw T -
sLIN
ANBSSY.
.+ 3
YTNH0D
SNOIS 1AM 40 :
FNLANALS VIV IAGXIHD ,
aw 21907 e TET R 9N1Q00

NOILVINIWITdNWI 4SVHd

i e - — b - AR LT e f = \

UPDATE APPLICATION PHASE WHEN UPDATES OCCUR

Preliminary Design Detail Design

Detail Design Implementation

Preliminary Design Test and Integration

Implementation Test and Integration

Detail Design Test and Integration
TABLE II-B

UPDATE APPLICATIONS

Software Metrics is first re-applied to revised
Preliminary Design documentation. Any segment Test Plans,
System and CPCI Test Plans and preliminary CPCI Test Pro-
cedures are required for this update process. These pro-
ducts are generated during test planning activities in the
Detail Design phase. FIGURE II-4 shows the Preliminary Design
update products and activities.

The second re-application of Software Metrics is to
revised Detail Design documentation. Altered Product Speci-
fications, including compiler and/or assembly listings are
required for this update application. These documents are .
produced during corresponding logic and data structure revision
activities in the Implementation phase of the life cycle.
FIGURE II-5 depicts the Detail Design update products and activ-
ities.

The final three update applications are re-applications
of Software Metrics to Preliminary Design, Implementation and
Detail Design documentation. The update to the Preliminary
Design documentation requires final CPCI Test Procedures, any
segment and system-level Test Procedures, and Test Reports.
These products are generated during Test Planning activities,
and module and CPCI tests and software subsystem integration
activities in the Test and Integration phase, The update to
the Implementation phase documengation requires computer

II1-11

o

B o

eee

" W T

program coding changes which are generated during module tests,
CPCI tests, and software subsystem integration activities of
the Test and Integration phase. The final update is applied

to Detail Design phase documentation and requires modified
Product specifications, and possible high-level specification
and ICD changes. These documents are also generated during
module and CPCI tests, and software subsystem integration
activities in the Test and Integration phase. FIGURE II-6
details the activities and products of the Test and Integration
phase.

2.4.3 Documentation Considerations

There are four major issues to consider when applying
Software Metrics to the products generated during a project's
life cycle.

(1) The content of the documenfs

(2) The possibility that the products may not map
uniquely into discrete phases

(3) The appropriate level of application, System/
Subsystem, or Subsystem/Module

(4) The sequencing of Metric applications.

2.4.3.1 Contents of Documents

The first issue to consider is the content of
the documents. The type of information asked for by
the Software Metrics should be found in the documents
named in Subsection 2.2 and repeated in the Mpdule
Instructions. If these documents do not contain the
necessary information, an investigation should be
made into other contractor-supplied documentation to
locate the sources of this information. If the infor-
mation cgnnot be located, this may indicate a ''gap"
in the development and the issue should be resolved.

2.4.3.2 Product Mapping

The second issue involving documentation con-
cerns the possibility that products may not always map

11-12

$13N@0¥d ANV STILIAILIV OINI A3ddVW
TAAOW HTDAD HAIT JIYLIINW

9-1II FUNOIA

I1-13

ALIALLDY

‘ 4

-
- —— N . R U
- o e = S

uniquely into discrete life cycle phases. Thus, it
may be necessary to refer to the documentation of pre-
vious phases to answer some of the Data Element ques-
tions in a particular phase.

2.4.3.3 Appropriate Levels of Applying Metrics

Software Metrics may be applied on two sepa-
rate sets of levels; (1) System/Subsystem levels or
(2) Subsystem/Module levels.

The third issue that concerns application of
the metrics involves choosing the appropriate levels
of application of the metrics. The metric system has
two levels and can be applied either at the System/
Subsystem levels or at the Subsystem/Module levels.

If the decision is made to apply the metrics at the
System/Subsystem levels one Handbook is required. For
each Sybsystem/Mpdule an additional Handbook is re-
quired for the particular Subsystem/Module application.

A "System” is considered to be a collection
of programs and/or subsystems sufficient to accomplish
a significant, coherent application or function. There-
fore, a "system-level" application of Software Metrics
entails:

(1) Selecting Quality Factors for the entire
system

(2) Applying Software Metrics to the docu-
ments that describe the collection of
programs and/or subsystems that accom-
plish the mission of the system in order
to determine the quality of those fac-
tors in the system.

For instance, before responding to the Data Element
question:

"Are requirements itemized so that the
various functions to be performed, their
inputs and outputs, are clearly delineated?"
a3 in Data Element "Unambiguous References"’

I1-14

‘ W & Bugairimens -2v0

2.4.3.3 continued

a system-level measurement in the Requirement Analysis
phase requires searching the System specifications to
determine if all of the subsystem's functions, their
inputs and their outputs, have been clearly delineated.
At the Preliminary Design phase, the Development speci-
fications for all the subsystems should be searched to
determine if all of the modules' functions, inputs and
outputs for all of the subsystems have been clearly de-
lineated before answering the same question. Through-
out the metric application and life cycle the appro-
priate level System/Subsystem must be documented.
Space for this is provided in the Handbook.

A "Subsystem'" is a collection of modules or-
ganized in such a way that they accomplish a larger and
more complex function than would normally be possible
for a single program. Thus, a Subsystem/Module appli-
cation of Software Metrics to each Subsystem entails:

(1) Selection of Quality Factors for each
subsystem (may be a subset of those
selected for the entire system)

(2) Applying Software Metrics to the docu-
ments that describe the collection of
modules that accomplish the function
of that subsystem in order to determine
the quality of the selected factors for

each subsystem.

In other words the Subsystem/Module Metrics
application VIEWS the Subsystem as the "entire' system
and the procedures over the entire life cycle are the
same as in the System/Subsystem application. It is
possible to apply the Metrics at both the System/
Subsystem levels and the Subsystem/Module levels.

This would require a separate Handbook and scparate

application.

f1-15

TN e S Pyt Passsclama il

Figure 11-7 illustrates the two sets of pos-
sible applications where a system has three levels:
(1) System, (2) Subsystem, and (3) Module.

2.4.3.4 Sequencing of Metric Agglication

The last issue to consider when applying the
Software Metrics is the sequencing of the application
effort itself. A decision should be made (in conjunc-
tion with the level of application) regarding desirable
application sequences: should all applicable Software
Metrics be applied to each document in turn, or should
the Software Metrics be applied to all documents of a
particular phase, searching each document for the re-
sponse for each Data Element question?

2.5 APPLICABILITY OF SOFTWARE METRICS THROUGH THE LIFE CYCLE

As mentioned in Section I, "Software Metrics'", each Quality
Factor is calculated from Criteria, Metrics, and Data Elements.
Most of the Quality Factors have at least one Data Element, Metric
and Criteria for each of the four life cycle phases: Requirement
Analysis, Preliminary Design, Detail Design, and Implementation.
In addition, most of the Metrics within each Quality Factor are
unique to a single phase. Therefore, for each Quality Factor, the
normal progression throughout the life cycle is to apply the Soft-
ware Metrics for each phase in the life cycle, asking different
questions at each phase.

This normal progression is deviated from in two ways. First,
some Quality Factors do not apply Software Metrics to all phases

in the life cycle. Only the Quality Factors Reliability, Complete-

ness, Efficiency, and Interoperability apply Software Metrics to
all four phases. Integrity and Usability apply Software Metrics
only to the Requiremeat Analysis and Prelimimary Design phases,
while Maintainability and Testability apply Software Metrics to
all phases except the Requirement Analysis phase. Finally, Flexi-
bility, Portability and Reusability apply Software Metrics only to

the last two phases: Detail Design and Implementation. TABLE II-C

shows this situation.

11-16

I Rt diar £ & uad maat Ll oo L AT T

uoresTIddy
aTNpoN/Aa3sAsqng

NOILVDOITddV JDIYW1IW 40 STdATT

L-11 FANOTILA

- an e m=(cy1 130M)

uor3eost1ddy
wa3sAsqng /us3sAs

KH154S

‘llll 203584 hﬂd ﬂ’ﬁ.

11-17

o e
[

QUALITY FACTOR

PHASES Where Applicable

Completeness

Reliability

Efficiency

Integrity

Usability

Maintainability

Flexibility

Testability

Portability
Reusability

Interoperability

Requirements Analysis
Preliminary Design
Detail Design
Implementation

Requirements Analysis
Preliminary Design
Detail Design
Implementation

Requirements Analysis
Preliminary Design
Detail Design
Implementation

Requirements Analysis
Preliminary Design

Requirements Analysis
Preliminary Design

Preliminary Design
Detail Desi
Implementation

Detail Design
Implementation

Preliminary Design
Detail Design
Implementation

Detail Desi
I-plenentatggn

Detail Desiin
Implementation

Requirements Analysis
Preliminary Design
Detail Desifn :
Implementation

TABLE I1-C

QUALITY FACTORS ACAOSS THE LIFE CYCLE

m—— T R Y .’ [N

11-18
bl chinadiie

1
{
——— e

2.5 continued

The second deviation from the normal progression is that
several Quality Factors repeat Metrics and Data Element questions
across phases, or a Data Elemen:t name will be used, but a different
(related) question will be asked. For instance, in the Quality
Factor Correctness, the Metric "Completeness Checklist" is applied
in the Requirement Analysis, Preliminary Design and the Detail De-
sign phases. The same Data Element questions are asked in all three
phases, but different documents and levels of detail are required in
each phase. On the other hand, in the Metric '"Data Consistency
Measure'", the Data Element "Global Data' asks the question "On the
system level, is global data defined only once?" in the Preliminary
Design phase, but asks, "On the module level, are global variables
used as defined globally?" in the Detail Design phase. The dif-
ference between the two questions is the level of application. -
TABLE 1I-D outlines this situation.

Both of these deviations are a result of the nature of the
Quality Factor being measured. The continuity of Software Metric's

concepts is maintained.

v S

ke

et FORES g Sk

[TSP IPN

et

DATA CONSISTENCY MEASURE

1.

1.

2|

0

0

0

3.0

Global Data (42)
1.1 On the system level,

is global data
defined only once? N/NI

YES = 1, NO = §

Detail Desi P}
1.0 Global Data (42)

1.1 On the module level,
are global variables

used as defined
globally? /N

YES = 1, NO = ¢

COMPLETENESS CHECKLIST

Unambiguous References (2)

1.1 Are requirements
. itemized so that the
various functions to
be performed, their
inputs and outputs,

are clearly dolineaﬁ
YES = 1, NO = ¢ '

External Data Reference(3)

2.1 Number of data
references which are
defined.

2.2 Number of major data
references.

Score = {2.1|+ [2.2

Major Punctions Used (4)

3.1 Number of defined

‘.o

functions used.
3.2 Number of functions
identifie

Score = [3.1|4# 3.2
Major Punctions Defined (5)

4.1 Number of identified
functions defined.
4.2 Number of functions

identif
Score = |4.1{~+]4.2

1.0 Unambiguous References (2)

.1.1 Are requirements
itemized so that the
various functions to
be performed, their
inputs and outputs,
are clearly delineate@fH

YES = 1, NO = §

2.0 External Data Reference (3)

2.1 Number of data
references which are
defined.

2.2 Number of major data
references.

" Score = |2,1{5{2.2

3.0 Major Functions Used (4)

3.1 Number of defined
functions used.

3.2 Number of functions
identifi

Score = + (3.2
4.0 Major Functions Defined (5)

4.1 Number of identified
functions defined.
4.2 Number of functions

identif
Score = |4.1|-3]4.2

TABLE 11-D

TA)

I1I-

LIFB CYC

20

2 s o

Preliminary Design Phase

5.0 Decision Points Defined (6)

5.1 1Is the flow of
processing and all
decision points in
that flow defined?

YES = 1, NO = ¢

6.0 Agreement of Callin
Sequence Parameters (7)
6.1 Number of defined
and referenced
calling sequence
parameters that

agree between
functions.

6.2 Number of calling
sequence of parameters.

Score =16.1]|=2=16.2

7.0 Problem Reports Resolved (8)

7.1 Number of those
problem reports
that have been
closed (resolved)

7.2 Number of problem
reports related to
the requirements
that have been
reported

Score =|7.1|l$=17.2

5.0

6.0

7.0

Detail Design Phase

Decision Points Defined (6)

5.1 Is the flow of
processing and all
decision points in
that flow defined?

YES = 1, NO = ¢

Agreement of Callin
equence Parameters (7)

6.1 Number of defined
and referenced
calling sequence
parameters that
agree between
functions.

6.2 Number of calling

sequence of parameters.

Score =[6.1]-4=16.2

Problem Reports Resolved (8)

7.1 Number of those
problem reports
that have been
closed (resolved)

7.2 Number of problem
reports related to
the requirements
that have been
reported.

Score =|7.1]4-17.2

TABLE II-D (cont'd)

DATA ELEMENTS ACROSS THE LIFE CYCLE

" SECTION 111
HANDBOOK FRAMEWORK

3.1 COMPONENTS OF COMPUTER SYSTEMS ACQUISITION METRICS HANDBOOK

The Computer Systems Acquisition Metrics Handbook consists
of the following components:

General Instructions - This component discusses the Intro-
duction to metrics, the Framework of Software Metrics, 1life
cycle considerations, the framework of the Handbook, a step-
by-step method on how to use the Handbook, and Quality Fattor
Selection. You are reading this component now.

Eleven Quality Factor Modules - There are eleven quality fac-
tor modules, each module contains a complete hierarchy of
worksheet sets with instructions on how and when to use them.

Data Element Dictionary (DED) - The DED is a reference guide
for all the Data Elements. It lists the name, an index num-
ber for keying from the worksheet to the DED, Data Element
questions asked, a life cycle phase description, an example
with explanations and worksheet reference for each Data

. Element.

Figure III-1 graphically represents the framework of the Soft-
ware Metrics Handbook. Section .3.2 discusses the relationship of
the Handbook's framework to the Software Metric's framework.

3.2 INTERRELATION§HIP OF SOFTWARE'METRIC'S AND HANDBOOK'S FRAMEWORKS

The structure of the Handbook is designed to be closely con-
nected with the Software Metrics framework. At the broadest level
of detail where the two frameworks match is at the eleven modules
themselves. Each module measures one Quality Factor.

I111-1

HANDROX
DSTRTIOS SELECTTION
. INSTRICTIONS
DATA ELBMENT
DICTIONARY
(ED)
oF
> \ouns
o, @y
DSTRXTIONS DETRATIOS DSTRXTION
| 1
[[
| DATA a DATA -
cuscrion || COLLECTION | COLLECTION L_
a METRIC n MeTIC m
CMORATION | CALARATION || AN [
n ACTOR
EVALUATION [BVALUATYON EVALUATION
: - :

DBOQK FRAMEWORK

FIGURE III-1
I11-2

The worksheets in each module are arranged in two tc four
sets. These sets are organized according to the relevant Soft-
ware Metrics Life Cycle Model's phases: Requirements Analysis,
Preliminary Design, Detail Design, and Implementation. The work-
sheets within each phase are arranged accouding to their ranking
in the Software Metrics framework from the bottom-up: (1) Data
Elements, (2) Metric, (3) Criteria § (4) Quality Factor. . This
allows them to be applied in a structured process. A worksheet
set contains the following: one or more Metric worksheets,
followed by one or more Criteria worksheets, followed by one
Factor worksheet. Each level of worksheet contains scores from
the next lowest level of measurement. Therefore, each Metric
worksheet is composed of Data Element scores, each Criteria
worksheet contains Metric scores, and each Factor worksheet is
composed of Criteria scores. A person applying the Handbook at
each phase utilizes the Handbook's worksheets in a process which
is the exact inverse of the Software Metrics framework. The
first value to be derived using the Software Metrics Handbook is
the value of the lowest-level component in the Software Metrics
hierarchy, the Data E'ement. The next value derived is the Metric
value, which is one level higher, while the third value derived
is the Criteria value which is the second-highest level in the
hierarchy. The last value derived by applying the Handbook to a
system or subsystem is the Factor score, which is the highest
level component in the Software Metrics hierai-hy. Using the
modules' worksheets, the software Metrics framework is being com-
pleted starting at the bottom and working upwards. Figure III-2
depicts the interrelationship between the framework of the Soft-
ware Metrics and that of the Handbook.

111-3

QUALITY
FACTOR
MODULE

! DATA ELEMENT : L~ 3 DATA COLLECTION
' METRIC e METRIC CALCULATION
X EVALUATION
: ' METRIC WORKSHEETS
| CRITERIA . ?{r CRITERIA WORKSHEETS
| PACTOR \ > FACTOR WORKSHEETS
' SOFTWARE E
' METRICS - HANDBOOK FRAMEWORK
' FRAMEWORK :
FIGURE ITI-2
INTERRELATIONSHIP OF HANDBOOK'S AND
S0 METRIC' ORKS
IT1-4
) -“:;.— - B R ai—"l\

SECTION IV
HOW THE HANDBOOK WORKS

4.1 INTRODUCTION

This Handbook is an easy to use set of procedures to apply
Software Metrics to different types of systems. Use of this Hand-
book provides a good working knowledge of Software Metrics and
enables the user to apply them easily.

4,2 STEPS FOR USING THE SOFTWARE METRICS HANDBOOK

STEP 1 - SELECT QUALITY FACTORS

Section V of these General Instructions, "Quality Factor
Selection", is the first step in applying Software Metrics.
Quality Facotrs are selected either at System/Subsystem
levels or Subsystem/Module levels or combinations of both
sets of levels.

STEP 2 - OBTAIN RELEVANT MODULE

After selecting a particular set of Quality Factors for a
system, the next step is to obtain the Quality Factor Modules
corresponding to these Factors. There are eleven sepérate
Quality Factor Modules, each one corresponding to a Quality
Factor.

Each Quality Factor Module is composed of two parts: (1)
Diagrams and instructions for completing the module's work-
sheets and score charts. Included in the instructions is a
list of the activities and products required by each phase.
And (2) Worksheet sets,

For a system/subsystem level application, only one module

for each selected Quality Factor will be needed. If a sub-
system/module application is desired, then the Quality Factors
for that subsystem are selected and the corresponding modules

“are needed.

4.3

Code.
Form

If a combination of System/Subsystem and Subsystem/Module
applications are desired then Quality Factors are selected
for the System and the corresponding modules are needed for
application to the System Quality Factors are selected for
each Subsystem and corresponding modules for each Subsystem
are needed.

STEP 3 - COMPLETE WORKSHEETS

Worksheets are the tangible tools used in taking quantifiable
measurements of software quality. The worksheets used in

actual field work are contained in the Quality Factor Modules
selected in STEP 2. The actual steps required for completing

the worksheets can be found in '"Steps for Completing Worksheets",
in the Module Instructions for each Quality Factor. The end
result of applying these worksheets will be the establishment

of a quality rating for the Quality Factors.

STEP 4 - SUMMARIZING THE WORKSHEET RESULTS

After all of the worksheets have been completed for all of

the selected Quality Factors at the end of each phase, the

Score Charts are completed. The instructions for completing ,
the Score Charts are included in "How to Use Score Charts ;
sets", for each Quality Factor in the Module Instructions. 3
The Score Charts provide a vehicle for summati;ing the (
results of the Software Metri¢cs Worksheet Applications.

IDENTIFICATION OF WORKSHEETS

In the upper right hand corner of each worksheet is the Form
Each worksheet is assigned a Form Code according to the
Code Key notatjor in Table IV-A. When the worksheets are

organized accdrding to Form Code, the eleven "Quality Factor
Modules" are fermed.

MODULE PH&Eﬁ ‘//£EYEL SEQUENCE
R/ TRAC.2
INTEGRITY REQ- . CRITERIA COND PAGE OF SET

MODULE .
Co = Correctness RA = REQUIREMENTS ANALYSIS M = METRIC
Re = Reliability PD = PRELIMINARY DESIGN C = CRITERIA
Ef = Efficiency DD = DETAIL DESIGN F = FACTOR
It = Integrity IM = IMPLEMENTATION
US = Usability

Ma = Maintainability
Fx - Flexibility
Te = Testability
Po = Portability
Ru = Reusability
Ip = Interoperability

TABLE IV - A
FORM_CODE_KEY

) The first segment of a Form Code is an abbreviation of
the Quality Factor that pertains to the module that con-
| tains the worksheet: For example, CO (Correctness), Re
' (Reliability), etc.

° 'The second segment of a Form Code is an abbreviation of
the phase of the set containing the worksheet: For
example, RA (Requirements Analysis), PD [Preliminary
Design), and IM (Implementation).

° The third segment of a Form Code is an abbreviation of
the software quality measurement level that pertains to
the worksheet: For example, M (Metric), C (Criterion),
and F (Factor).

oA The fourth segment of a Form Code is the sequence number
of a particular worksheet (first Metric worksheet,
second Metric worksheet, etc.).

IvV-3

-~ - e

4.4 DATA LLEMENT OICTIONARY (LED)

For quick reference, one hundred twenty-six (126) Data
Elements are individually defined in the Data Element Dictionary
portion of this Handbook. Each dictionary entry contains the
following information: (1) Data Element name, (2) Index number,
(3) Validation question associated with the Data Element in the
Metric Worksheets, (4) Life-cycle phaseé(s) to which the Data
Element pertains, (5) Definition, (6) An example of the Data
Element's typical use, and (7) Explanation of how to score the
Metric worksheets that contain the Data Element. EXHIBIT IV-1
is a typical entry of a Data Element in the Dictioniry}

The Data Element Dictionary should be used as a reference
when additional understanding of a Data Element question is
desired, or when clarification is needed.

[T RN

NAME: Share Temporary Storage

PacIaEeT T o 9

INDEX NUMBER: 91

DATA ELEMENT: Is temporary storage independent /Y Z E /4 é
of other modules? : p

LIFE CYCLE PHASE(S): (1) Detail Design

DESCRIPTION: This is a binary measure to determine whether or

not modules share temporary storage. It empha-
sizes the loss of module independence if tempo-
rary storage’is shared between modules. ‘

EXAMPLE: Storage should be separate for each module.
Accessing commons should not be used instead of
passing parameters from one routine to thg next.

EXPLANATION: This %s a binary measure answered by a "Yes" or
a "No".)
WORKSHEET REFERENCE: FORM CODE PAGE

MaDDM.S Ma-28

- FxDDM.3 Fx-18

TeDDM.3 Te-31

PoDDM. 1 Po-16

RuDDM. 1 Ru-16

IpDDM.1 Ip-30°

EXHIBIT IV-1

EXAMPLE OF DATA ELEMENT
FROM DATA ELEMENT DICTIONARY

IV-5

v L A D AR PR

SRR PR s
4 B e IR

e -

- LN e S = .- }

. .
p— ———]

SECTION V
QUALITY FACTOR SELECTION

5.1 INTRODUCTION

This section provides a discussion of a method for selecting
the set of Quality Factors for a software system or subsystem.
Following a determination of the appropriate Quality Factors for
the system or subsystem, the corresponding Quality Factor Modules
are applied to the system or subsystem.

The first step of the Quality Factor selection process is to
examine the basic characteristics of the software system or sub-
system, and then compile a preliminary list of Quality Factors that
best provide for those characteristics. The eleven Quality Factors
are listed and defined in TABLE 1-A in Section I, "Software Metrics"
of this Handbook.

A discussion of the applicability of Quality Factors to c3
system is provided in Section 5.3 of these General Instructionms.
This preliminary list of Quality Factors can be developed by dis-
cussion with as wide a range as possible of the people responsible
for the system development. For example, the Quality Factors in-
put could come from the maintaining command, the originators of
the requirements specifications or the potential users. The
Quality Group responsible for measuring the quality of the system
must obtain clean input on this selection to assure the appro-
priate Quality Factors are being measured. Some of the Quality
Factors cannot co-exist in a system. Therefore the next step is
a trade-off between conflicting Quality Factors to determine the
final set of Quality Factors for measurement.

5.2 QUALITY FACTOR TRADE-OFFS

TABLE V-A shows either HIGH, LOW, or NEUTRAL relationships
among the eleven Quality Factors. Because of the nature of the
relationship between some of the Quality Factors, a high rank for
some of the Quality Factors will result in a conflict with somc

V-1

e T

&
COREETIEYS é.' |

&
= jifﬁ
mem 0]0]0]0 f'g‘f
wmuy [0[O/®] |0]0 &/
nmmam | 0|0@] @]o]o]0 7/s
PORTISTLITY o _Q____ y
==z | lelefel Tolololol
INTEROPEMSTLYTY ! 0@ (o)

LEGEND: 1If 3 high degree of quality is
present for Facter, what degree
oih:unlity is expected for the
other:

O- High .. Low

Blank = No relationship or spplication dependent

‘h-.\.!—-._-. - -

of the others. This is illustrated in TABLE V-A by a dark circle
in the intersecting squares. In this situation a decision must
determine the significance of the conflict between the Quality
Factors. - If the conflict is significant, one of the Quality Fac-
tors may be deleted from the list. However, if other considera-
tions negate the impact of the conflict, both Quality Factors may
be kept; however the low relationship between these factors must

be kept in mind during Evaluation. TABLE V-B is a list and explana-
tion of every possible Quality Factor conflict.

On the other hand, attaining high rank scores for certain
Quality Factors may imply other Quality Factors will also be pres-
ent, If the square in TABLE V-A contains a clear circle, a high
degree of relationship exists between the factors. If the square
is blank, a high degree of quality for one factor will have little
or no effect on the other.

5.3 SIGNIFICANCE OF QUALITY FACTORS IN C3 SYSTEMS

Since the main focus of this handbook is with Tactical Command,
Control and Communication (Cs) Systems, the following paragraphs
describe how applicable and important each Quality Factor is to a
tactical environment based on typical characteristics of C3 sys-
tems. The Quality Factors, with explanations of their significance,
are listed in order of their importance.

'. Correctness, Reliability and Efficiency - It is essen-
tial for a software system operating in a simulated or
actual battle environment to perform quickly and
accurately. That is the reason why the ability of a
tactical c3 system to satisfy its specifications, ful-
£i11 the user mission objectives, and perform its
intended function with the least amount of resources
and code are the most crucial requirements.

PY Interoperability - An important goal of Air Force system
developers is the development of a fully distributed
TAF/C3 system. This system, composed of many subsystems
spread out geographically, will be dgslgned to operate

+

ng' in less cﬂ“le'l’ut

resues

softmre

The sbove disgussion applies t» tastimg.
: ¢irect code or optiwmized

am&aMHg‘:ﬁn

i

w Mmm adx

L4

8

m H.

The above discussion .appliss to rewsability.

1 and flaxidle
$ iacTenses the Gats sacwriyy

EPFICIENCY
USABILITY
EFFICIDCY

INTEGRITY
V3

.V
U
nm'gxuﬂ
L ErcIICY
s

B¥IcIpEY

5
i

using automated resource sharing and distributed con-
trol. For this reason, the ability of any one system
to be coupled with another is a crucial factor.

o Flexibility and Maintainability - A tactical C° system

will go through a complex evolution in its development,
so it must be adaptable to constant change. Software
modules in a system should be easy to add, replace, and
change.

° Testability - A tactical C3 system must go through ex-
tensive testing at different points of its development.
Only after testing, can a system's reliability and per-
formance in a battle environment be measured realistically.

° Portability - The ability to transfer data bases and/or
software to and from any unit is important. A fully
distributed C3 system is composed of a configuration of
mobile and non-mobile hardware units situated at dif-
ferent strategic locations.

° Usability - Another requirement crucial to the success
of a tactical C3 system in the field is that military
personnel learn to utilize and interface with the soft-
ware with ease. Some methods used by the Air Force to
increase Usability are automated decision aids (to allow
rapid information assimilation and decision making) and
automated communication (to make information readily
available to the commander and his staff).

PY Integrity - The extent to which access to software and
data can be controlled is relatively unimportant com-
pared with the other requirements, but is essential
nonetheless. For example, the interception of intel-
ligence data by the enemy in a wartime situation could
have grave implications.

° Reusability - The extent to which a program can be
used in other applications is relatively unimportant
in C3 systems.

The order of importance is not always the same and the above
order is meant only as a guide.

SECTION VI
QUALITY FACTOR EVALUATION

6.1 POST DATA COLLECTION

At the close of Section V you were instructed to use the
Module Instructions to find directions for completing all work-
sheets. This subsection and post-data collection is included
in the "Introduction and General Instructions'" to discuss the
‘possible uses of the data and metric values leading to Quality
Factor Evaluations,

6.2 EVALUATION

As you will see when you start working with the modules
each worksheet contains an Evaluation Worsection. It is im-
portant to remember that the worksection is a subjective work-
section for recording the judgements of the person applying the
module. The other worksections are part of the "objective"
metric system and the '"subjective" worksection is included for
the purpose of future analysis. The Evaluation Worksection
asks: "What is your evaluation of the reviewed products based
on.the Metrics above? (1-10 or # if you are unable to
evaluate)."” When a person is evaluating a Criteria it would be
possible to have one Metric with a high score and another with a
low score. The evaluator could decide that the Criteria should
be evaluated fairly high (5-8) because in his opinion the low
scoring Metric did not have much of an impact on the system.
Because of this subjective nature, a particular evaluator may
consistantly evaluate high, or consistantly evaluate low.
Some method of tracking and monitoring this type of scoring
should be developed so that an analysis of the scores and scorer
can be done as a means of giving & proper interpretation to the
historical data in the data base.

vVi-1

#

There are three dimensions that need to be analyzed over time

to improve the credibility of threshold values leading to
Quality Factor Evaluations: (1) The objective metric scores,
(2) The subjective evaluation section score and (3) The in-
dependent evaluation of total systems that are in the maintenace
phase of the life cycle. By comparing these three dimensions
over time metric scores that consistantly have a strong or high
correlation with evaluation at either the worksheet or system
level will lead to the establishment of credible threshold value.
When this happens the user for metrics will expand and become .
even more valuable.

VI-2

—pT e T e - e

B e RTEE

